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The Von Bertalanffy differential equation arose in allometric studies in order to represent growth as the result

of a balance between anabolic and catabolic processes.

For instance, a spherical bacterium of radius r has a rate of absorbtion of nutrients proportional to the surface

area 4πr2 but a rate of metabolism proportional to the volume 4πr3/3, so the ratio of surface area to bulk

decreases as 3/r and it would be anticipated that the rate of change in size y as a function of time x, say

dy/dx, would increase rapidly for small y but slow down as y increases. This leads to the expression

dy
dx
= p1y

p2 − p3y
p4, y(0) = p5

for some exponents p2 and p4 with p4 > p2 ≥ 0, where to model a growth process y and the parameters pi
would be nonnegative. For certain special parameter values formal integral is possible and leads to some of

the classical growth equations as follows.

Exponential model dS/dt = kS

S(t) = A exp(kt), where A = S0

Monomolecular model dS/dt = k (A − S)

S(t) = A[1 − B exp(−kt)], where B = 1 − S0/A

Logistic model dS/dt = kS(A − S)/A

S(t) = A/[1 + B exp(−kt)], where B = A/S0 − 1

Von Bertalanffy 2/3 model dS/dt = ηS2/3
− κS

S(t) = [A1/3
− B exp(−kt)]3,

where A1/3
= η/κ, B = η/κ − S1/3

0
, k = κ/3

However the Von Bertalanffy differential equation will be used to illustrate the methods available using SimFIT

to study the properties of a differential equation, followed by simulation and curve fitting.

To examine this differential equation requires choosing the fixed parameters and the initial condition so the

following values will be used for this purpose.

p1 = 1

p2 = 2/3

p3 = 1

p4 = 1

p5 = 0.01

Of course this is the original case where a formal integral exists and it is an interesting exercise to consider

the alternative y(x) profiles that result as these parameters are varied. However, with these parameter values

the following observations can be made.

1. The slope is zero when y is zero and when y is 1

2. As x does not appear on the right hand side the slope is fixed given any y for 0 ≤ y ≤ 1

3. The y(x) curve is monotonically increasing for x > 0
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Initial conditions

Here, for example, is a series of plots illustrating how increasing the initial condition y(0) from p5 = 0.01 to

p5 = 0.4 simply slides the profiles to the left.
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To make composite plots of y(x) profiles such as this for any differential equations use the following protocol.

1. Open program deqsol from the [A/Z] option on the main SimFIT menu and select the differential

equation required from the library of pre-compiled models, or by reading in a user-defined model.

2. Edit the parameters as required, which in this example using the library model is just p5.

3. Plot the y(x) data between the end points selected (in this case 100 points for 0 ≤ x ≤ 10) and use

the [Advanced] option to save the coordinates to file. Note that, after doing this, the files saved can be

added to your graph plotting archive for retrospective plotting as part of a group.

4. Input the group of coordinate files into program simplot either individually, from your project archive,

or best of all from a library file created using program maklib, then edit as required.

Simulating and fitting

As we are dealing with a single differential equation, it is best to proceed as follows

• Use program makdat to simulate a y(x) profile.

• Use program adderr to add random error.

• Finally fit using program qnfit.

That is because these programs provide more options than are available with program deqsol, which is

really designed to work with systems of differential equations. Using program qnfit to fit the default data set

qnfit_ode.tf2 results in the following outcome. First the overlay before fitting, then the overlay after

fitting, and finally the results.
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Best-fit parameters for curve-fit 1 using LBFGSB/DVODE

Number Low-Limit High-Limit Value Std. Error Lower95%cl Upper95%cl p
1 0.50 1.50 0.887160 0.0029641 0.88126 0.89306 0.0000

2 0.25 0.75 0.616683 0.0009505 0.61479 0.61858 0.0000

3 0.50 1.50 0.875717 0.0021387 0.87146 0.87998 0.0000

4 0.75 1.25 0.943496 0.0026182 0.93828 0.94871 0.0000

5 0.0001 0.05 0.010133 0.0000739 0.00999 0.00103 0.0000
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Of course this is an artificial data set over an extended range using a model defined in the SimFIT library, and

the fitting included the initial condition for purposes of illustration, which should be avoided at all costs with

actual data.

The von Bertalannffy user defined model

For information, the corresponding default user-defined model file is deqmod1_e.tf6 which is now listed.

%
model: von Bertalannfy growth model

differential equation: f(1) = dy(1)/dx
= p(1)*y(1)^p(2) - p(3)*y(1)^p(4)

Jacobian: j(1) = df(1)/dy(1)
= p(1)*p(2)*y(1)^(p(2) - 1.0)
-p(3)*p(4) y(1)^(p(4) - 1.0)

initial condition: y0(1) = p(5)
%
1 equation
differential equation
5 parameters
%
begin{expression}
f(1) = p(1)y(1)^p(2) - p(3)y(1)^p(4)
end{expression}
%
begin{expression}
A = p(2) - 1.0
B = p(4) - 1.0
j(1) = p(1)p(2)y(1)^A - p(3)p(4)y(1)^B
end{expression}
%

Coding for the model is now finished but parameter starting values,
curve fitting limits, and range of integration can be appended.
If these are not supplied DEQSOL will need an initialisation file.

begin{limits}
0 1.0 3
0 0.6666667 3
0 1.0 3
0 1.0 3
0 0.01 1
end{limits}

begin{range}
121
0
10
end{range}
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